Epitope-mapping studies define two major neutralization sites on the vaccinia virus extracellular enveloped virus glycoprotein B5R

表位作图研究确定了痘苗病毒胞外包膜病毒糖蛋白 B5R 上的两个主要中和位点

阅读:7
作者:Lydia Aldaz-Carroll, J Charles Whitbeck, Manuel Ponce de Leon, Huan Lou, Lauren Hirao, Stuart N Isaacs, Bernard Moss, Roselyn J Eisenberg, Gary H Cohen

Abstract

Vaccinia extracellular enveloped virus (EEV) is critical for cell-to-cell and long-range virus spread both in vitro and in vivo. The B5R gene encodes an EEV-specific type I membrane protein that is essential for efficient EEV formation. The majority of the B5R ectodomain consists of four domains with homology to short consensus repeat domains followed by a stalk. Previous studies have shown that polyclonal antibodies raised against the B5R ectodomain inhibit EEV infection. In this study, our goal was to elucidate the antigenic structure of B5R and relate this to its function. To do this, we produced multimilligram quantities of vaccinia virus B5R as a soluble protein [B5R(275t)] using a baculovirus expression system. We then selected and characterized a panel of 26 monoclonal antibodies (MAbs) that recognize B5R(275t). Five of these MAbs neutralized EEV and inhibited comet formation. Two other MAbs were able only to neutralize EEV, while five others were able only to inhibit comet formation. This suggests that the EEV neutralization and comet inhibition assays measure different viral functions and that at least two different antigenic sites on B5R are important for these activities. We further characterized the MAbs and the antigenic structure of B5R(275t) by peptide mapping and by reciprocal MAb blocking studies using biosensor analysis. The epitopes recognized by neutralizing MAbs were localized to SCR1-SCR2 and/or the stalk of B5R(275t). Furthermore, the peptide and blocking data support the concept that SCR1 and the stalk may be in juxtaposition and may be part of the same functional domain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。