Nanoarchitectonics of Illite-Based Materials: Effect of Metal Oxides Intercalation on the Mechanical Properties

伊利石基材料的纳米结构:金属氧化物插层对力学性能的影响

阅读:6
作者:Jiwei Jia, Daoyong Wu, Yu Ren, Jiyu Lin

Abstract

Clay minerals inevitably interact with colloidal oxides (mainly iron and aluminum oxides) in the evolution of natural geomaterials. However, the interaction between the clay minerals and the colloidal oxides affecting the stability and the strength of geotechnical materials remains poorly understood. In the present work, the interaction between the clay minerals and the colloidal oxides was investigated by reaction molecular dynamics simulations to explore the mechanical properties of illite-based materials. It was found that the metal atoms of the intercalated amorphous iron and aluminum oxides interact with oxygen atoms of the silica tetrahedron at the interface generating chemical bonds to enhance the strength of the illite-based materials considerably. The deformation and failure processes of the hybrid illite-based structures illustrated that the Al-O bonds were more favorable to the mechanical properties' improvement of the hybrid system compared with Fe-O bonds. Moreover, the anisotropy of illite was greatly improved with metal oxide intercalation. This study provides new insight into the mechanical properties' improvement of clay-based materials through metal oxides intercalation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。