Trichostatin A preferentially reverses the upregulation of gene-expression levels induced by gain of chromosome 7 in colorectal cancer cell lines

曲古霉素 A 优先逆转结直肠癌细胞系中 7 号染色体增加引起的基因表达水平上调

阅读:10
作者:Floryne O Buishand, Eric Cardin, Yue Hu, Thomas Ried

Abstract

Epithelial cancers are defined by a tumor-specific distribution of chromosomal aneuploidies that are maintained when cells metastasize and are conserved in cell lines derived from primary tumors. Correlations between genomic copy number and gene expression have been observed for different tumors including, colorectal (CRC), breast, and pancreatic cancer. These ploidy-driven transcriptional deregulations are characterized by low-level expression changes of most genes on the affected chromosomes. The emergence of these aberrations at an early stage of tumorigenesis and the strong selection for the maintenance of these aneuploidies suggest that aneuploidy-dependent transcriptional deregulations might contribute to cellular transformation and maintenance of the malignant phenotype. The histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) has anticancer effects and is well known to lead to large-scale gene-expression changes. Here we assessed if TSA could disrupt the aneuploidy-driven gene expression in the aneuploid colon cancer cell line SW480 and the artificially generated aneuploid cell line DLD-1 + 7. We found that TSA increases transcriptional activity throughout the genome, yet inhibits aneuploidy-induced gene-expression changes on chromosome 7. Among the TSA affected genes on chromosome 7, we identified potential CRC oncogenes. These experiments represent the first attempt to explain how histone acetylation affects aneuploidy-driven gene-expression changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。