The Role of Dicer Phosphorylation in Gemcitabine Resistance of Pancreatic Cancer

Dicer磷酸化在胰腺癌吉西他滨耐药中的作用

阅读:5
作者:Ching-Feng Chiu, Hui-Ru Lin, Yen-Hao Su, Hsin-An Chen, Shao-Wen Hung, Shih-Yi Huang

Abstract

Dicer, a cytoplasmic type III RNase, is essential for the maturation of microRNAs (miRNAs) and is implicated in cancer progression and chemoresistance. Our previous research demonstrated that phosphorylation of Dicer at S1016 alters miRNA maturation and glutamine metabolism, contributing to gemcitabine (GEM) resistance in pancreatic ductal adenocarcinoma (PDAC). In this study, we focused on the role of Dicer phosphorylation at S1728/S1852 in GEM-resistant PDAC cells. Using shRNA to knock down Dicer in GEM-resistant PANC-1 (PANC-1 GR) cells, we examined cell viability through MTT and clonogenic assays. We also expressed phosphomimetic Dicer 2E (S1728E/S1852E) and phosphomutant Dicer 2A (S1728A/S1852A) to evaluate their effects on GEM resistance and metabolism. Our results show that phosphorylation at S1728/S1852 promotes GEM resistance by reprogramming glutamine metabolism. Specifically, phosphomimetic Dicer 2E increased intracellular glutamine, driving pyrimidine synthesis and raising dCTP levels, which compete with gemcitabine's metabolites. This metabolic shift enhanced drug resistance. In contrast, phosphomutant Dicer 2A reduced GEM resistance. These findings highlight the importance of Dicer phosphorylation in regulating metabolism and drug sensitivity, offering insights into potential therapeutic strategies for overcoming GEM resistance in pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。