Poricoic Acid A Inhibits the NF- κ B/MAPK Pathway to Alleviate Renal Fibrosis in Rats with Cardiorenal Syndrome

聚羧酸A抑制NF-κB/MAPK通路减轻心肾综合征大鼠肾脏纤维化

阅读:5
作者:Wenzhong Chen, Zhiwen Fan, Canhui Huang, Junying Liu

Conclusion

PAA can obviously improve the pathological damage and fibrosis of renal tissue in CRS rats and maintain the function of the heart and kidney. The above functions of PAA may be achieved by inhibiting the NF-κB/MAPK signaling pathway activity. Briefly speaking, PAA can serve as a potential drug for CRS treatment.

Methods

A CRS rat model was established by transabdominal subtotal nephrectomy (STNx). The experimental group was treated by gavage of PAA (10 mg/kg/day). After 8 weeks of treatment, echocardiography was utilized for detecting heart-related indexes in rats. HE and Masson staining were conducted to detect the degree of pathological damage and fibrosis in rat kidney tissue, respectively. In addition, serum blood urea nitrogen (BUN), serum creatinine (SCr), and 24-hour urine protein were measured biochemically. Also, the levels of inflammatory factors (IL-1β, IL-6, and IL-10) in rat kidneys were measured using ELISA. Western blot was used to examine the expression of NF-κB/MAPK pathway-related proteins.

Objective

To explore the potential and mechanism of action of poricoic acid A (PAA) in treatment of cardiorenal injury and fibrosis due to cardiorenal syndrome (CRS). Materials and

Results

In this study, a CRS rat model was successfully established by STNx surgery. PAA treatment could significantly alleviate the damage of heart and kidney function in CRS rats and reduce the pathological damage of kidney tissue and renal fibrosis. Meanwhile, PAA could also inhibit the renal inflammatory response through downregulating IL-1β and IL-6 levels in the kidney tissue and upregulating IL-10 level. Further mechanism exploration showed that the NF-κB/MAPK signaling pathway was significantly activated in CRS rats, while PAA treatment could markedly inhibit the NF-κB/MAPK signaling pathway activity in CRS rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。