Salutary effect of aurintricarboxylic acid on endotoxin- and sepsis-induced changes in muscle protein synthesis and inflammation

金精三羧酸对内毒素和脓毒症引起的肌肉蛋白质合成和炎症变化的有益作用

阅读:5
作者:Lacee J Laufenberg, Abid A Kazi, Charles H Lang

Abstract

Small molecule nonpeptidyl molecules are potentially attractive drug candidates as adjunct therapies in the treatment of sepsis-induced metabolic complications. As such, the current study investigates the use of aurintricarboxylic acid (ATA), which stimulates insulinlike growth factor 1 receptor and AKT signaling, for its ability to ameliorate the protein metabolic effects of endotoxin (lipopolysaccharide [LPS]) + interferon γ (IFN-γ) in C2C12 myotubes and sepsis in skeletal muscle. Aurintricarboxylic acid dose- and time-dependently increases mTOR (mammalian or mechanistic target of rapamycin)-dependent protein synthesis. Pretreatment with ATA prevents the LPS/IFN-γ-induced decrease in protein synthesis at least in part by maintaining mTOR kinase activity, whereas posttreatment with ATA is able to increase protein synthesis when added up to 6 h after LPS/IFN-γ. Aurintricarboxylic acid also reverses the amino acid resistance, which is detected in response to nutrient deprivation. Conversely, ATA decreases the basal rate of protein degradation and prevents the LPS/IFN-γ increase in proteolysis, and the latter change is associated reduced atrogin 1 and MuRF1 mRNA. The ability of ATA to antagonize LPS/IFN-γ-induced changes in protein metabolism was associated with its ability to prevent the increases in interleukin 6 and nitric oxide synthase 2 and decreases in insulinlike growth factor 1. In vivo studies indicate ATA acutely increases skeletal muscle, but not cardiac, protein synthesis and attenuates the loss of lean body mass over 5 days. These data suggest ATA and other small molecule agonists of endogenous anabolic hormones may prove beneficial in treating sepsis by decreasing the inflammatory response and improving muscle protein balance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。