The Effects of Pb on TNF-R1-RIPK1/RIPK3 Signaling Pathway in the Hippocampus of Mice

铅对小鼠海马TNF-R1-RIPK1/RIPK3信号通路的影响

阅读:5
作者:Huishuai Li #, Zhenning Li #, Chun Yang #, Ruokun Wei, Peiqi Wei, Haiyan Yuan, Michael Aschner, Shiyan Ou, Dongjie Peng, Shaojun Li

Abstract

Lead (Pb), a dense, soft, blue-gray metal, is widely used in metallurgy, cables, storage batteries, pigments, and other industrial applications. Pb has been shown to cause degenerative changes in the nervous system. Necroptosis, a form of non-apoptotic programmed cell death modality, is closely associated with neurodegenerative diseases. Whether the TNF-R1-RIPK1/RIPK3 pathway is involved in the neurodegeneration induced by Pb has yet to be determined. Here, we explored the role of the TNF-R1-RIPK1/RIPK3 signaling pathway in the Pb-induced necroptosis by using HT-22 cells, primary mouse hippocampal neurons, and C57BL/6 mice models, demonstrating that Pb exposure elevated lead levels in murine whole blood and hippocampal tissue in a dose-response relationship. Protein expression levels of PARP, c-PARP, RIPK1, p-RIPK1, RIPK3, MLKL, and p-MLKL in the hippocampal tissues were elevated, while the protein expression of caspase-8 was decreased. Furthermore, Pb exposure reduced the survival rates in HT-22 cells and primary mouse hippocampal neurons, while increasing the protein expressions of RIPK1 and p-MLKL. Collectively, these novel findings suggest that the TNF-R1/RIPK1/RIPK3 signaling pathway is associated with Pb-induced neurotoxicity in hippocampal neurons in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。