Partial Deletion of Tie2 Affects Microvascular Endothelial Responses to Critical Illness in A Vascular Bed and Organ-Specific Way

Tie2 的部分缺失以血管床和器官特异性方式影响微血管内皮对危重疾病的反应

阅读:6
作者:Rianne M Jongman, Peter J Zwiers, Bart van de Sluis, Marleen van der Laan, Jill Moser, Jan G Zijlstra, Daphne Dekker, Nicolette Huijkman, Henk E Moorlag, Eliane R Popa, Grietje Molema, Matijs van Meurs

Abstract

Tyrosine kinase receptor (Tie2) is mainly expressed by endothelial cells. In animal models mimicking critical illness, Tie2 levels in organs are temporarily reduced. Functional consequences of these reduced Tie2 levels on microvascular endothelial behavior are unknown. We investigated the effect of partial deletion of Tie2 on the inflammatory status of endothelial cells in different organs. Newly generated heterozygous Tie2 knockout mice (exon 9 deletion, ΔE9/Tie2) exhibiting 50% reduction in Tie2 mRNA and protein, and wild-type littermate controls (Tie2), were subjected to hemorrhagic shock and resuscitation (HS + R), or challenged with i.p. lipopolysaccharide (LPS). Kidney, liver, lung, heart, brain, and intestine were analyzed for mRNA levels of adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular cell adhesion molecule 1 (ICAM-1), and CD45. Exposure to HS + R did not result in different expression responses of these molecules between organs from Tie2 or Tie2 mice and sham-operated mice. In contrast, the LPS-induced mRNA expression levels of E-selectin, VCAM-1, and ICAM-1, and CD45 in organs were attenuated in Tie2 mice when compared with Tie2 mice in kidney and liver, but not in the other organs studied. Furthermore, reduced expression of E-selectin and VCAM-1 protein, and reduced influx of CD45 cells upon LPS exposure, was visible in a microvascular bed-specific pattern in kidney and liver of Tie2 mice compared with controls. In contrast to the hypothesis that a disbalance in the Ang/Tie2 system leads to increased microvascular inflammation, heterozygous deletion of Tie2 is associated with an organ-restricted, microvascular bed-specific attenuation of endothelial inflammatory response to LPS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。