Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence

PglX 甲基转移酶和 BREX 噬菌体防御特异性因子的结构和合理工程

阅读:5
作者:Sam C Went, David M Picton, Richard D Morgan, Andrew Nelson, Aisling Brady, Giuseppina Mariano, David T F Dryden, Darren L Smith, Nicolas Wenner, Jay C D Hinton, Tim R Blower

Abstract

Bacteria have evolved a broad range of systems that provide defence against their viral predators, bacteriophages. Bacteriophage Exclusion (BREX) systems recognise and methylate 6 bp non-palindromic motifs within the host genome, and prevent replication of non-methylated phage DNA that encodes these same motifs. How BREX recognises cognate motifs has not been fully understood. In this study we characterise BREX from pathogenic Salmonella and present X-ray crystallographic structures of the conserved BREX protein, PglX. The PglX N-terminal domain encodes the methyltransferase, whereas the C-terminal domain is for motif recognition. We also present the structure of PglX bound to the phage-derived DNA mimic, Ocr, an inhibitor of BREX activity. Our analyses propose modes for DNA-binding by PglX and indicate that both methyltransferase activity and defence require larger BREX complexes. Through rational engineering of PglX we broaden both the range of phages targeted, and the host motif sequences that are methylated by BREX. Our data demonstrate that PglX is used to recognise specific DNA sequences for BREX activity, contributing to motif recognition for both phage defence and host methylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。