Mutation and structure guided discovery of an antiviral small molecule that mimics an essential C-Terminal tripeptide of the vaccinia D4 processivity factor

突变和结构引导发现一种抗病毒小分子,该分子模仿痘苗病毒 D4 加工因子的必需 C 端三肽

阅读:4
作者:Manunya Nuth, Hancheng Guan, Yuhong Xiao, John L Kulp 3rd, Michael H Parker, Eric D Strobel, Stuart N Isaacs, Richard W Scott, Allen B Reitz, Robert P Ricciardi

Abstract

The smallpox virus (variola) remains a bioterrorism threat since a majority of the human population has never been vaccinated. In the event of an outbreak, at least two drugs against different targets of variola are critical to circumvent potential viral mutants that acquire resistance. Vaccinia virus (VACV) is the model virus used in the laboratory for studying smallpox. The VACV processivity factor D4 is an ideal therapeutic target since it is both essential and specific for poxvirus replication. Recently, we identified a tripeptide (Gly-Phe-Ile) motif at the C-terminus of D4 that is conserved among poxviruses and is necessary for maintaining protein function. In the current work, a virtual screening for small molecule mimics of the tripeptide identified a thiophene lead that effectively inhibited VACV, cowpox virus, and rabbitpox virus in cell culture (EC50 = 8.4-19.7 μM) and blocked in vitro processive DNA synthesis (IC50 = 13.4 μM). Compound-binding to D4 was demonstrated through various biophysical methods and a dose-dependent retardation of the proteolysis of D4 proteins. This study highlights an inhibitor design strategy that exploits a susceptible region of the protein and identifies a novel scaffold for a broad-spectrum poxvirus inhibitor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。