Attenuation of methylglyoxal-induced glycation and cellular dysfunction in wound healing by Centella cordifolia

积雪草可减轻伤口愈合过程中甲基乙二醛引起的糖化和细胞功能障碍

阅读:6
作者:Ali S Alqahtani, Kong M Li, Valentina Razmovski-Naumovski, Antony Kam, Perwez Alam, George Q Li

Abstract

Current pre-clinical evidences of Centella focus on its pharmacological effects on normal wound healing but there are limited studies on the bioactivity of Centella in cellular dysfunction associated with diabetic wounds. Hence we planned to examine the potential of Centella cordifolia in inhibiting methylglyoxal (MGO)-induced extracellular matrix (ECM) glycation and promoting the related cellular functions. A Cell-ECM adhesion assay examined the ECM glycation induced by MGO. Different cell types that contribute to the healing process (fibroblasts, keratinocytes and endothelial cells) were evaluated for their ability to adhere to the glycated ECM. Methanolic extract of Centella species was prepared and partitioned to yield different solvent fractions which were further analysed by high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) method. Based on the antioxidant [2,2-diphenyl-1-picrylhydrazyl (DPPH) assay] screening, anti-glycation activity and total phenolic content (TPC) of the different Centella species and fractions, the ethyl acetate fraction of C. cordifolia was selected for further investigating its ability to inhibit MGO-induced ECM glycation and promote cellular distribution and adhesion. Out of the three Centella species (C. asiatica, C. cordifolia and C. erecta), the methanolic extract of C. cordifolia showed maximum inhibition of Advanced glycation end products (AGE) fluorescence (20.20 ± 4.69 %, 25.00 ± 3.58 % and 16.18 ± 1.40 %, respectively). Its ethyl acetate fraction was enriched with phenolic compounds (3.91 ± 0.12 mg CAE/μg fraction) and showed strong antioxidant (59.95 ± 7.18 μM TE/μg fraction) and antiglycation activities. Improvement of cells spreading and adhesion of endothelial cells, fibroblasts and keratinocytes was observed for ethyl acetate treated MGO-glycated extracellular matrix. Significant reduction in attachment capacity of EA.hy926 cells seeded on MGO-glycated fibronectin (41.2%) and attachment reduction of NIH3t3 and HaCaT cells seeded on MGO-glycated collagen (33.7% and 24.1%, respectively) were observed. Our findings demonstrate that ethyl acetate fraction of C. cordifolia was effective in attenuating MGO-induced glycation and cellular dysfunction in the in-vitro wound healing models suggesting that C. cordifolia could be a potential candidate for diabetic wound healing. It could be subjected for further isolation of new phytoconstituents having potential diabetic wound healing properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。