Deracemization via Periodic and Non-periodic Temperature Cycles: Rationalization and Experimental Validation of a Simplified Process Design Approach

通过周期性和非周期性温度循环进行去消旋化:简化工艺设计方法的合理化和实验验证

阅读:6
作者:Francesca Breveglieri, Brigitta Bodák, Marco Mazzotti

Abstract

Solid-state deracemization via temperature cycles is a promising technique that combines crystallization and racemization in the same batch process to attain enantiomer purification. This method is particularly attractive because the target enantiomer can be isolated with a 100% yield, and a large number of operating parameters can be adjusted to do this effectively. However, this implies that several choices need to be made to design the process for a new compound. In this work, we provide a solution to this dilemma by suggesting a simplified model-free design approach based on a single dimensionless parameter, that is, the dissolution factor, that represents the cycle capacity. This quantity is obtained from a novel rescaling of the model equations proposed in previous work and acts as a handy design parameter because it only depends on the operating conditions, such as the suspension density, the enantiomeric excess, and the difference in solubility between high and low temperatures in the cycle. With extensive modeling studies, supported by experimental results, we demonstrate the primary and general effect of the dissolution factor on the deracemization process and thus its relevance for the process design. Through both experiments and simulations, we rationalize and evaluate the process performance when periodic and non-periodic temperature cycles are applied to the deracemization of virtual and real compounds with different properties, that is, growth rate and solubility. Based on the approach proposed here, we clarify how the combined effect of more operating conditions can be exploited to obtain quasi-optimal process performance, which results superior when deracemization via periodic temperature cycles is performed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。