Preparation and Pharmacokinetics of Brain-Targeted Nanoliposome Loaded with Rutin

脑靶向芦丁纳米脂质体的制备及药代动力学

阅读:6
作者:Changxu Wu, Jinwu Zhang, Shisen Yang, Chunzi Peng, Maojie Lv, Jing Liang, Xiaoning Li, Liji Xie, Yingyi Wei, Hailan Chen, Jiakang He, Tingjun Hu, Zhixun Xie, Meiling Yu

Abstract

Rutin is a flavonoid compound with potential for treating Alzheimer's disease, preventing brain damage, mitigating cerebral ischemia-reperfusion injury, and exhibiting anti-glioblastoma activity. However, its efficacy is limited by its low solubility, poor bioavailability, and limited permeability across the blood-brain barrier (BBB). To enhance the bioavailability and brain-targeting ability of Rutin, transferrin-modified Rutin liposome (Tf-Rutin-Lip) was developed using liposomes as a delivery system. Rutin liposomes were prepared using the thin-film dispersion method, and the preparation conditions were optimized using the response surface methodology. Then, transferrin (Tf) was incorporated into the liposomes through covalent modification, yielding Tf-Rutin liposomes. The toxicity of these liposomes on bEnd.3 cells, as well as their impact on the tight junctions of these cells, was rigorously evaluated. Additionally, in vitro and in vivo experiments were conducted to validate the brain-targeting efficacy of the Tf-Rutin liposomes. A susceptible detection method was developed to characterize the pharmacokinetics of Tf-Rutin-Lip further. The optimized conditions for the preparation of Tf-Rutin-Lip were determined as follows: a lipid-to-cholesterol ratio of 4.63:1, a drug-to-lipid ratio of 1:45.84, a preparation temperature of 42.7 °C, a hydration volume of 20 mL, a sonication time of 10 min, a surfactant concentration of 80 mg/mL, a DSPE-MPEG-2000 concentration of 5%, and a DSPE-PEG2000-COOH to DSPE-MPEG-2000 molar ratio of 10%. The liposomes did not affect the cell activity of bEnd.3 cells at 24 h and did not disrupt the tight junction of the blood-brain barrier. Tf-modified liposomes were taken up by bEnd.3 cells, which, in turn, passed through the BBB, thus improving liposomal brain targeting. Furthermore, the results of pharmacokinetic experiments showed that the Cmax, AUC0-∞, AUC0-t, MRT0-∞, and t1/2 of Tf-Rutin-Lip increased 1.99-fold, 2.77-fold, 2.58-fold, 1.26-fold, and 1.19-fold compared to those of free Rutin solution, respectively. These findings suggest that Tf-Rutin-Lip is brain-targeted and may enhance the efficacy of Rutin in the treatment of brain disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。