LPS Disrupts Endometrial Receptivity by Inhibiting STAT1 Phosphorylation in Sheep

LPS 通过抑制绵羊的 STAT1 磷酸化破坏子宫内膜容受性

阅读:11
作者:Xing Fan, Jinzi Wei, Yu Guo, Juan Ma, Meiyu Qi, He Huang, Peng Zheng, Wenjie Jiang, Yuchang Yao

Abstract

Uterine infections reduce ruminant reproductive efficiency. Reproductive dysfunction caused by infusion of Gram-negative bacteria is characterized by the failure of embryo implantation and reduced conception rates. Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, is highly abortogenic. In this study, the effects of LPS infusion on the endometrial receptivity of sheep were studied during three critical periods of embryo implantation. The results showed that LPS infusion on d12, d16, and d20 of pregnancy in vivo interfered with the expression of prostaglandins (PGs) and affected the expression of adhesion-related factors (ITGB1/3/5, SPP1), key implantation genes (HOXA10, HOXA11 and LIF), and progestational elongation genes (ISG15, RSAD2 and CXCL10) during embryo implantation. In addition, after LPS infusion on d12, d16, and d20, the phosphorylation level of STAT1 significantly decreased and the protein expression level of IRF9 significantly increased on d12, suggesting that LPS infusion in sheep impairs endometrial receptivity through the JAK2/STAT1 pathway. Sheep endometrial epithelial cells were treated with 17 β-estrogen, progesterone, and/or interferon-tau in vitro to mimic the receptivity of the endometrium during early pregnancy for validation. LPS and the p-STAT1 inhibitor fludarabine were both added to the model, which resulted in reduced p-STAT1 protein expression, significant inhibition of PGE2/PGF2α, and significant suppression of the expression of key embryo implantation genes. Collectively, these results indicate that LPS infusion in sheep on d12, d16, and d20 impairs endometrial receptivity through the JAK2/STAT1 pathway, which is responsible for LPS-associated pregnancy failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。