Folate receptor-targeted ultrasonic PFOB nanoparticles: Synthesis, characterization and application in tumor-targeted imaging

叶酸受体靶向超声PFOB纳米粒子的合成、表征及在肿瘤靶向成像中的应用

阅读:8
作者:Keshi Li, Yahui Liu, Shengmin Zhang, Youfeng Xu, Jianshuai Jiang, Fengying Yin, Yue Hu, Baosan Han, Shuxiong Ge, Li Zhang, Yong Wang

Abstract

In this study, we aimed to determine an effective strategy for the synthesis of folate receptor (FR) targeted-nanoparticles (FRNPs). The nanoparticles used as ultrasound contrast agents (UCAs) were composed of a liquid core of perfluorooctyl bromide (PFOB) liposome and a targeted shell chemically conjugated with folic acid (FA) and polyethylene glycol (PEG). This was done in order to avoid recognition and clearance by the mononuclear phagocyte system [also known as the reticuloendothelial system (RES)] and enhance the targeting capability of the nanoparticles to tumors overexpressing folate receptor (FR). The FRNPs exhibited an average particle size of 301±10.8 nm and surface potential of 39.1±0.43 mV. Subsequently, in vitro, FRNPs labeled with FITC fluorescence dye were visibly uptaken into the cytoplasm of FR-overexpressing cancer cells (Bel7402 and SW620 cells), whereas the A549 cells expressing relatively low levels of FR just bound with few FRNPs. These results demonstrated that FRNPs have a high affinity to FR-overexpressing cancer cells. Additionally, in in vivo experiments, FRNPs achieved a greater enhancement of tumor ultrasound imaging and a longer enhancement time in FR-overexpressing tumors and the Cy7-labeled FRNPs exhibited a relatively high tumor-targeted distribution in FR‑overexpressing tumors. Targeted ultrasound and fluorescence imaging revealed that FRNPs have the ability to target FR-overexpressing tumors and ex vivo fluorescence imaging was then used to further verify and confirm the presence of FRNPs in tumor tissues with histological analysis of the tumor slices. On the whole, our data demonstrate that the FRNPs may prove to be a promising candidate for the early diagnosis for FR-overexpressing tumors at the molecular and cellular levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。