The N-terminal capping propensities of the D-helix modulate the allosteric activation of the Escherichia coli cAMP receptor protein

D-螺旋的 N 端封盖倾向调节大肠杆菌 cAMP 受体蛋白的变构活化

阅读:6
作者:Shaoning Yu, Rodrigo A Maillard, Alexey V Gribenko, J Ching Lee

Abstract

Transduction of biological signals at the molecular level involves the activation and/or inhibition of allosteric proteins. In the transcription factor cAMP receptor protein (CRP) from Escherichia coli, the allosteric activation, or apo-holo transition, involves rigid body motions of domains and structural rearrangements within the hinge region connecting the cAMP- and DNA-binding domains. During this apo-holo transition, residue 138 is converted as part of the elongated D-helix to the position of the N-terminal capping residue of a shorter D-helix. The goal of the current study is to elucidate the role of residue 138 in modulating the allostery between cAMP and DNA binding. By systematically mutating residue 138, we found that mutants with higher N-terminal capping propensities lead to increased cooperativity of cAMP binding and a concomitant increase in affinity for lac-DNA. Furthermore, mutants with higher N-terminal capping propensity correlate with properties characteristic of holo-CRP, particularly, increase in protein structural dynamics. Overall, our results provide a quantitative characterization of the role of residue 138 in the isomerization equilibrium between the apo and holo forms of CRP, and in turn the thermodynamic underpin to the molecular model of allostery revealed by the high resolution structural studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。