Mutational loss of a K+ and NH4+ transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4

K+ 和 NH4+ 转运蛋白的突变缺失影响嗜碱性芽孢杆菌 OF4 的生长和内孢子形成

阅读:5
作者:Yi Wei, Thomas W Southworth, Hilde Kloster, Masahiro Ito, Arthur A Guffanti, Anne Moir, Terry A Krulwich

Abstract

A putative transport protein (Orf9) of alkaliphilic Bacillus pseudofirmus OF4 belongs to a transporter family (CPA-2) of diverse K+ efflux proteins and cation antiporters. Orf9 greatly increased the concentration of K+ required for growth of a K+ uptake mutant of Escherichia coli. The cytoplasmic K+ content of the cells was reduced, consistent with an efflux mechanism. Orf9-dependent translocation of K+ in E. coli is apparently bidirectional, since ammonium-sensitive uptake of K+ could be shown in K+ -depleted cells. The upstream gene product Orf8 has sequence similarity to a subdomain of KTN proteins that are associated with potassium-translocating channels and transporters; Orf8 modulated the transport capacities of Orf9. No Orf9-dependent K+(Na+)/H+ antiport activity was found in membrane vesicles. Nonpolar deletion mutants in the orf9 locus of the alkaliphile chromosome exhibited no K+ -related phenotype but showed profound phenotypes in medium containing high levels of amine-nitrogen. Their patterns of growth and ammonium content suggested a physiological role for the orf9 locus in bidirectional ammonium transport. Orf9-dependent ammonium uptake was observed in right-side-out membrane vesicles of the alkaliphile wild type and the mutant with an orf8 deletion. Uptake was proton motive force dependent and was inhibited by K+. Orf9 is proposed to be designated AmhT (ammonium homeostasis). Ammonium homeostasis is important in high-amine-nitrogen settings and is particularly crucial at high pH since cytosolic ammonium accumulation interferes with cytoplasmic pH regulation. Endospore formation in amino-acid-rich medium was significantly defective and germination was modestly defective in the orf9 and orf7-orf10 deletion mutants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。