Molecular Correlates of Topiramate and GRIK1 rs2832407 Genotype in Pluripotent Stem Cell-Derived Neural Cultures

多能干细胞衍生的神经培养物中托吡酯和 GRIK1 rs2832407 基因型的分子相关性

阅读:7
作者:Richard Lieberman, Kevin P Jensen, Kaitlin Clinton, Eric S Levine, Henry R Kranzler, Jonathan Covault

Background

There is growing evidence that the anticonvulsant topiramate is efficacious in reducing alcohol consumption. Further, an intronic single nucleotide polymorphism (rs2832407, C A) in the GRIK1 gene, which encodes the GluK1 subunit of the excitatory kainate receptor, predicted topiramate's effectiveness in reducing heavy drinking in a clinical trial. The molecular correlates of GRIK1 genotype that may relate to topiramate's ability to reduce drinking remain unknown.

Conclusions

This work highlights the use of iPSC technologies to study pharmacogenetic treatment effects in psychiatric disorders and furthers our understanding of the molecular effects of topiramate exposure in human neural cells.

Methods

We differentiated induced pluripotent stem cells (iPSCs) characterized by GRIK1 rs2832407 genotype from 8 A/A and 8 C/C donors into forebrain-lineage neural cultures. Our differentiation protocol yielded mixed neural cultures enriched for glutamatergic neurons. Basal mRNA expression of the GRIK1 locus was examined via quantitative polymerase chain reaction (qPCR). The effects of acute topiramate exposure on excitatory spontaneous synaptic activity were examined via whole-cell patch-clamp electrophysiology.

Results

Although characterization of the GRIK1 locus revealed no effect of rs2832407 genotype on GRIK1 isoform mRNA expression, a significant difference was observed on GRIK1 antisense-2 expression, which was greater in C/C neural cultures. Differential effects of acute exposure to 5 μM topiramate were observed on spontaneous synaptic activity in A/A versus C/C neurons, with a smaller reduction in excitatory event frequency observed in C/C donor neurons. Conclusions: This work highlights the use of iPSC technologies to study pharmacogenetic treatment effects in psychiatric disorders and furthers our understanding of the molecular effects of topiramate exposure in human neural cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。