The dynamics of adapting, unregulated populations and a modified fundamental theorem

适应的动态、不受管制的人口和修改的基本定理

阅读:12
作者:James P O'Dwyer

Abstract

A population in a novel environment will accumulate adaptive mutations over time, and the dynamics of this process depend on the underlying fitness landscape: the fitness of and mutational distance between possible genotypes in the population. Despite its fundamental importance for understanding the evolution of a population, inferring this landscape from empirical data has been problematic. We develop a theoretical framework to describe the adaptation of a stochastic, asexual, unregulated, polymorphic population undergoing beneficial, neutral and deleterious mutations on a correlated fitness landscape. We generate quantitative predictions for the change in the mean fitness and within-population variance in fitness over time, and find a simple, analytical relationship between the distribution of fitness effects arising from a single mutation, and the change in mean population fitness over time: a variant of Fisher's 'fundamental theorem' which explicitly depends on the form of the landscape. Our framework can therefore be thought of in three ways: (i) as a set of theoretical predictions for adaptation in an exponentially growing phase, with applications in pathogen populations, tumours or other unregulated populations; (ii) as an analytically tractable problem to potentially guide theoretical analysis of regulated populations; and (iii) as a basis for developing empirical methods to infer general features of a fitness landscape.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。