Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship

人类烟酰胺单核苷酸腺苷酸转移酶同工酶2的同源建模和缺失突变体:结构与功能关系的新见解

阅读:11
作者:Lucia Brunetti, Michele Di Stefano, Silverio Ruggieri, Flavio Cimadamore, Giulio Magni

Abstract

Nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the formation of NAD by means of nucleophilic attack by 5'-phosphoryl of NMN on the α-phosphoryl group of ATP. Humans possess three NMNAT isozymes (NMNAT1, NMNAT2, and NMNAT3) that differ in size and sequence, gene expression pattern, subcellular localization, oligomeric state and catalytic properties. Of these, NMNAT2, the least abundant isozyme, is the only one whose much-needed crystal structure has not been solved as yet. To fill this gap, we used the crystal structures of human NMNAT1 and NMNAT3 as templates for homology-based structural modeling of NMNAT2, and the resulting raw structure was then refined by molecular dynamics simulations in a water box to obtain a model of the final folded structure. We investigated the importance of NMNAT2's central domain, which we postulated to be dispensable for catalytic activity, instead representing an isozyme-specific control domain within the overall architecture of NMNAT2. Indeed, we experimentally confirmed that removal of different-length fragments from this central domain did not compromise the enzyme's catalytic activity or the overall tridimensional structure of the active site.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。