Spike Ca2+ influx upmodulates the spike afterdepolarization and bursting via intracellular inhibition of KV7/M channels

尖峰 Ca2+ 内流通过细胞内抑制 KV7/M 通道上调尖峰后去极化和爆发

阅读:9
作者:Shmuel Chen, Yoel Yaari

Abstract

In principal brain neurons, activation of Ca(2+) channels during an action potential, or spike, causes Ca(2+) entry into the cytosol within a millisecond. This in turn causes rapid activation of large conductance Ca(2+)-gated channels, which enhances repolarization and abbreviates the spike. Here we describe another remarkable consequence of spike Ca(2+) entry: enhancement of the spike afterdepolarization. This action is also mediated by intracellular modulation of a particular class of K(+) channels, namely by inhibition of K(V)7 (KCNQ) channels. These channels generate the subthreshold, non-inactivating M-type K(+) current, whose activation curtails the spike afterdepolarization. Inhibition of K(V)7/M by spike Ca(2+) entry allows the spike afterdepolarization to grow and can convert solitary spikes into high-frequency bursts of action potentials. Through this novel intracellular modulatory action, Ca(2+) spike entry regulates the discharge mode and the signalling capacity of principal brain neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。