Electrochemical detection of ascorbic acid in artificial sweat using a flexible alginate/CuO-modified electrode

使用柔性海藻酸盐/CuO修饰电极电化学检测人工汗液中的抗坏血酸

阅读:6
作者:Bergoi Ibarlucea, Arnau Pérez Roig, Dmitry Belyaev, Larysa Baraban, Gianaurelio Cuniberti

Abstract

A flexible sensor is presented for electrochemical detection of ascorbic acid in sweat based on single-step modified gold microelectrodes. The modification consists of electrodeposition of alginate membrane with trapped CuO nanoparticles. The electrodes are fabricated at a thin polyimide support and the soft nature of the membrane can withstand mechanical stress beyond requirements for skin monitoring. After characterization of the membrane via optical and scanning electron microscopy and cyclic voltammetry, the oxidative properties of CuO are exploited toward ascorbic acid for amperometric measurement at micromolar levels in neutral buffer and acidic artificial sweat, at ultralow applied potential (- 5 mV vs. Au pseudo-reference electrode). Alternatively, measurement of the horizontal shift of redox peaks by cyclic voltammetry is also possible. Obtaining a limit of detection of 1.97 μM, sensitivity of 0.103 V log (μM)-1 of peak shift, and linear range of 10-150 μM, the effect of possible interfering species present in sweat is minimized, with no observable cross-reaction, thus maintaining a high degree of selectivity despite the absence of enzymes in the fabrication scheme. With a lateral flow approach for sample delivery, repeated measurements show recovery in few seconds, with relative standard deviation of about 20%, which can serve to detect increased loss or absence of vitamin, and yet be improved in future by optimized device designs. This sensor is envisioned as a promising component of wearable devices for e.g. non-invasive monitoring of micronutrient loss through sweat, comprising features of light weight, low cost, and easy fabrication needed for such application. Graphical Abstract Schematic depiction of the cyclic voltammetry signal change as the sweat flows over the sensor surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。