Shikonin reverses pyruvate kinase isoform M2-mediated propranolol resistance in infantile hemangioma through reactive oxygen species-induced autophagic dysfunction

紫草素通过活性氧诱导的自噬功能障碍逆转丙酮酸激酶异构体 M2 介导的婴儿血管瘤对普萘洛尔的耐药性

阅读:6
作者:Enli Yang, Xuan Wang, Shengyun Huang, Mingyang Li, Yiming Li, Yiming Geng, Xuejian Liu, Zhanwei Chen, Dongsheng Zhang, Haiwei Wu

Abstract

Infantile hemangioma (IH) is the most common benign tumor in infancy. Propranolol, a nonselective β-adrenergic receptor blocker, is now the first-line therapy for IH. Recently, low sensitivity to propranolol therapy has become one major reason for the failure of IH treatment. However, the exact underlying mechanisms are yet to be fully elucidated. Here, we reported that pyruvate kinase isoform M2 (PKM2), an essential glycolytic enzyme, played a critical role in regulating the progression of IH and the therapeutic resistance of propranolol treatment. Shikonin reversed the propranolol resistance in hemangioma-derived endothelial cells and in hemangioma animal models. Moreover, shikonin combined with propranolol could induce excessive reactive oxygen species (ROS) accumulation and lead to autophagic dysfunction, which is essential for the enhanced therapeutic sensitivity of propranolol treatment. Taken together, our results indicated that PKM2 has a significant role in hemangiomas progression and therapeutic resistance; it could be a safe and effective therapeutic strategy for those hemangiomas with poor propranolol sensitivity combined with shikonin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。