Gpr174-deficient regulatory T cells decrease cytokine storm in septic mice

Gpr174 缺陷型调节性 T 细胞可降低脓毒症小鼠的细胞因子风暴

阅读:5
作者:Dongze Qiu, Xun Chu, Laiqing Hua, Yunke Yang, Keyong Li, Yi Han, Jun Yin, Ming Zhu, Sucheng Mu, Zhan Sun, Chaoyang Tong, Zhenju Song

Abstract

G protein-coupled receptor 174 (GPR174) is mainly expressed in thymus, spleen, lymph nodes, and leukocytes, and genetic variation in GPR174 is associated with susceptibility to autoimmune diseases, indicating that GPR174 is involved in the immune response. However, the function of GPR174 in regulating inflammatory responses against bacterial infection in sepsis remains unclear. In this study, we investigated the role of GPR174 in regulating suppressive function of regulatory T cells (Treg cells) and the underlying mechanism of Gpr174-deficient Treg cells in controlling cytokine storm of sepsis. We showed that Gpr174-dedicient mice were resistant to inflammatory shock induced by lipopolysaccharide (LPS) and cecal ligation and puncture (CLP). Moreover, Gpr174 was highly expressed in Treg cells, and its deficiency in mice promoted the expression of cytotoxic T lymphocyte associated antigen 4 (CTLA-4) and interleukin (IL)-10 in Treg cells. By using the LPS-induced sepsis model, we demonstrated that anti-inflammatory macrophages (M2 macrophages) induction was Treg cell-dependent and Gpr174-deficient Treg cells protected mice against sepsis-induced lung damage through prompting M2 macrophages polarization. In vitro, Gpr174-deficient Treg cells also promoted the polarization of macrophages toward M2 cells and dampened the secretions of pro-inflammatory cytokines (IL-6 and tumor necrosis factor-α (TNF-α)) in macrophages. In conclusion, these findings suggested that GPR174 plays an important role in the initial period of sepsis through the regulation of macrophage polarization and pro- and anti-inflammatory cytokine secretions. Therefore, GPR174 may be a promising target for therapeutic agents to regulate inflammatory disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。