Naturally occurring CD4+ T-cell epitope variants act as altered peptide ligands leading to impaired helper T-cell responses in hepatitis C virus infection

天然存在的 CD4+ T 细胞表位变体充当改变的肽配体,导致丙型肝炎病毒感染中的辅助 T 细胞反应受损

阅读:6
作者:Matthew F Cusick, Meiying Yang, Joan C Gill, David D Eckels

Abstract

Hepatitis C virus (HCV) has a high rate of replication and lacks RNA-proofreading capabilities, thereby leading to variant or mutant viruses circulating within the host as a quasispecies. Previous work in our laboratory identified viral variants that emerged in a class-II immunodominant epitope NS3(358-375) of the non-structural-3 (NS3) protein region of HCV, the sequence of which is based on genotype 1A, the most prevalent genotype in the United States. Further work suggested that positive immune selection pressure was driving viral variation. Paradoxically, viral variants account for only a small percentage of the circulating virus in human beings and in chimpanzees, suggesting that passive evasion is not the only means of escape by HCV. This observation suggests a unique pathogenesis for HCV as it persists in the host. In the current study, we hypothesize that viral variants are acting as altered peptide ligands (APLs). To test this hypothesis, we used cloned T cells specific for NS3(358-375) peptide, which demonstrated attenuated T-cell and interferon-γ (IFN-γ) responses to individual variant peptides, when compared with the NS3(358-375) stimulated T-cell clones. Furthermore, such variants could act as APLs, based on their ability to antagonize the IFN-γ proliferative responses of clones specific for NS3(358-375). In addition, major histocompatibility complex (MHC) class II tetramer staining demonstrated that variant peptide-MHC complexes were able to specifically bind to NS3(358-375) T-cell clones and that both the variant and NS3(358-375) tetramers were able to bind to the same CD4(+) T cells. Taken together, the results suggest that viral variants may act as APL to effectively blunt the T-cell response to an important HCV epitope.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。