Pioneer statoacoustic neurons guide neuroblast behaviour during otic ganglion assembly

先驱静态听觉神经元在耳神经节组装过程中引导神经母细胞行为

阅读:6
作者:Aitor Bañón, Berta Alsina

Abstract

Cranial ganglia are aggregates of sensory neurons that mediate distinct types of sensation. The statoacoustic ganglion (SAG) develops into several lobes that are spatially arranged to connect appropriately with hair cells of the inner ear. To investigate the cellular behaviours involved in the 3D organization of the SAG, we use high-resolution confocal imaging of single-cell, labelled zebrafish neuroblasts (NBs), photoconversion, photoablation, and genetic perturbations. We show that otic NBs delaminate out of the otic epithelium in an epithelial-mesenchymal transition-like manner, rearranging apical polarity and primary cilia proteins. We also show that, once delaminated, NBs require RhoGTPases in order to perform active migration. Furthermore, tracking of recently delaminated NBs revealed their directed migration and coalescence around a small population of pioneer SAG neurons. These pioneer SAG neurons, not from otic placode origin, populate the coalescence region before otic neurogenesis begins and their ablation disrupts delaminated NB migratory pathways, consequentially affecting SAG shape. Altogether, this work shows for the first time the role of pioneer SAG neurons in orchestrating SAG development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。