Purinergic autocrine regulation of mechanosensitivity and serotonin release in a human EC model: ATP-gated P2X3 channels in EC are downregulated in ulcerative colitis

人类 EC 模型中嘌呤能自分泌调节机械敏感性和血清素释放:溃疡性结肠炎中 EC 中的 ATP 门控 P2X3 通道下调

阅读:6
作者:Andrómeda Liñán-Rico, Jacqueline E Wunderlich, Iveta S Grants, Wendy L Frankel, Jianjing Xue, Kent C Williams, Alan E Harzman, Joshua T Enneking, Helen J Cooke, Fievos L Christofi

Background

Alterations in 5-hydroxytryptamine (HT) signaling in inflamed gut may contribute to pathogenesis of inflammatory bowel diseases. Adenosine 5'-triphosphate (ATP) regulates mucosal-mechanosensory reflexes and ATP receptors are sensitive to mucosal inflammation. Yet, it remains unknown whether ATP can modulate 5-HT signaling in enterochromaffin cells (EC). We tested the novel purinergic hypothesis that ATP is a critical autocrine regulator of EC mechanosensitivity and whether EC expression of ATP-gated P2X3-ion channels is altered in inflammatory bowel diseases.

Conclusions

ATP is a critical determinant of mechanosensation and 5-HT release via autocrine activation of slow P2Y1-phospholipase C/inositol-1,4,5-triphosphate-Ca or inhibitory P2Y12-purinergic pathways, and fast ATP-gated P2X3-channels. UC downregulation of P2X3-channels (or A2B) is postulated to mediate abnormal 5-HT signaling.

Methods

Laser confocal (fluo-4) Ca imaging was performed in 1947 BON cells. Chemical stimulation or mechanical stimulation (MS) was used to study 5-HT or ATP release in human BON or surgical mucosal specimens, and purine receptors by reverse transcription-polymerase chain reaction, Western Blot, or P2X3-immunoreactivity in BON or 5-HT human EC (hEC) in 11 control and 10 severely inflamed ulcerative colitis (UC) cases.

Results

ATP or MS triggered Ca-transients or 5-HT release in BON. ATP or adenosine diphosphate increased 5-HT release 5-fold. MS caused ATP release, detected after 5'ecto-ATPase inhibition by ARL67156. ARL67156 augmented and apyrase blocked Ca/5-HT mechanosensitive responses. 2-Methyl-thio-adenosine diphosphate 5'-monophosphate-evoked (P2Y1,12) or mechanically-evoked responses were blocked or augmented by a P2Y1,12 antagonist, MRS2179, in different cells or inhibited by U73122. A P2Y12 antagonist, 2MeSAMP, augmented responses. A P2X1,3 agonist, α,β-MeATP, triggered Ca responses, whereas a P2X1,2/3,3 antagonist, 2',3'-O-(2,4,6-trinitrophenyl)-ATP, blocked mechanical responses or cell-surface 5'ATP- labeling. In hEC, α,β-MeATP stimulated 5-HT release. In UC, P2X3-immunoreactivity decreased from 15% to 0.2% of 5-HThECs. Human mucosa and BON expressed P2X1, P2X3, P2X4, P2X5, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y12R-messenger RNA transcripts. Conclusions: ATP is a critical determinant of mechanosensation and 5-HT release via autocrine activation of slow P2Y1-phospholipase C/inositol-1,4,5-triphosphate-Ca or inhibitory P2Y12-purinergic pathways, and fast ATP-gated P2X3-channels. UC downregulation of P2X3-channels (or A2B) is postulated to mediate abnormal 5-HT signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。