Yes-associated protein activation potentiates glycogen synthase kinase-3 inhibitor-induced proliferation of neonatal cardiomyocytes and iPS cell-derived cardiomyocytes

Yes 相关蛋白活化增强糖原合酶激酶 3 抑制剂诱导的新生儿心肌细胞和 iPS 细胞衍生心肌细胞增殖

阅读:8
作者:Yusuke Kametani, Shota Tanaka, Yuriko Wada, Shota Suzuki, Ayaka Umeda, Kosuke Nishinaka, Yoshiaki Okada, Makiko Maeda, Shigeru Miyagawa, Yoshiki Sawa, Masanori Obana, Yasushi Fujio

Abstract

Because mammalian cardiomyocytes largely cease to proliferate immediately after birth, the regenerative activity of the heart is limited. To date, much effort has been made to clarify the regulatory mechanism of cardiomyocyte proliferation because the amplification of cardiomyocytes could be a promising strategy for heart regenerative therapy. Recently, it was reported that the inhibition of glycogen synthase kinase (GSK)-3 promotes the proliferation of neonatal rat cardiomyocytes (NRCMs) and human iPS cell-derived cardiomyocytes (hiPSC-CMs). Additionally, Yes-associated protein (YAP) induces cardiomyocyte proliferation. The purpose of this study was to address the importance of YAP activity in cardiomyocyte proliferation induced by GSK-3 inhibitors (GSK-3Is) to develop a novel strategy for cardiomyocyte amplification. Immunofluorescent microscopic analysis using an anti-Ki-67 antibody demonstrated that the treatment of NRCMs with GSK-3Is, such as BIO and CHIR99021, increased the ratio of proliferative cardiomyocytes. YAP was localized in the nuclei of more than 95% of cardiomyocytes, either in the presence or absence of GSK-3Is, indicating that YAP was endogenously activated. GSK-3Is increased the expression of β-catenin and promoted its translocation into the nucleus without influencing YAP activity. The knockdown of YAP using siRNA or pharmacological inhibition of YAP using verteporfin or CIL56 dramatically reduced GSK-3I-induced cardiomyocyte proliferation without suppressing β-catenin activation. Interestingly, the inhibition of GSK-3 also induced the proliferation of hiPSC-CMs under sparse culture conditions, where YAP was constitutively activated. In contrast, under dense culture conditions, in which YAP activity was suppressed, the proliferative effects of GSK-3Is on hiPSC-CMs were not detected. Importantly, the activation of YAP by the knockdown of α-catenin restored the proproliferative activity of GSK-3Is. Collectively, YAP activation potentiates the GSK-3I-induced proliferation of cardiomyocytes. The blockade of GSK-3 in combination with YAP activation resulted in remarkable amplification of cardiomyocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。