Interferon-β inhibits toll-like receptor 9 processing in multiple sclerosis

干扰素-β 抑制多发性硬化症中的 Toll 样受体 9 处理

阅读:15
作者:Konstantin E Balashov, Latt Latt Aung, Adi Vaknin-Dembinsky, Suhayl Dhib-Jalbut, Howard L Weiner

Methods

We separated pDCs from healthy subjects and patients diagnosed with relapsing-remitting MS and clinically isolated syndrome. Cytokine secretion by pDCs activated with TLR9 agonists was measured by enzyme-linked immunosorbent assay and multianalyte profiling. TLR9 gene and protein expression was studied by DNA microarrays and western blot.

Objective

Viral infections have been implicated in the pathogenesis of multiple sclerosis (MS). Plasmacytoid dendritic cells (pDCs) are present in peripheral blood, cerebrospinal fluid, and brain lesions of MS patients. pDCs sense viral DNA via Toll-like receptor 9 (TLR9), which has to be cleaved from the N-terminal to become functional (TLR9 processing). pDCs activated with TLR9 agonists promote T-helper type 1 (Th1)/T-helper type 17 (Th17) responses. In the animal model of MS, TLR9 agonists can induce disease. We hypothesized that pDCs are inhibited by disease-modifying therapy such as interferon (IFN)-β, consequently decreasing the frequency of MS attacks.

Results

In untreated patients, pDCs activated with TLR9 agonists produced increased levels of IFN-α, a Th1-promoting cytokine, as compared to healthy subjects. In IFN-β-treated patients, activated pDCs had decreased ability to produce both IFN-α and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α as compared to untreated patients. pDCs separated from IFN-β-treated patients had significantly reduced levels of the processed TLR9 protein but normal levels of the full-length TLR9 protein and TLR9 gene expression as compared to untreated patients. Interpretation: This finding represents a novel immunomodulatory mechanism of IFN-β: inhibition of TLR9 processing. This results in decreased activation of pDCs by viral pathogens and, thus, may affect the frequency of MS exacerbations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。