Selective Activation of Striatal NGF-TrkA/p75NTR/MAPK Intracellular Signaling in Rats That Show Suppression of Methamphetamine Intake 30 Days following Drug Abstinence

大鼠纹状体 NGF-TrkA/p75NTR/MAPK 细胞内信号选择性激活,在戒毒 30 天后抑制甲基苯丙胺摄入

阅读:7
作者:Oscar V Torres, Subramaniam Jayanthi, Michael T McCoy, Jean Lud Cadet

Background

The continuing epidemic of methamphetamine addiction has prompted research aimed at understanding striatal dysfunctions potentially associated with long-term methamphetamine use.

Conclusions

These findings support the notion that animals with distinct phenotypes for methamphetamine intake in the presence of adverse consequences also display differential changes in an intracellular signaling cascade activated by nerve growth factor-TrkA/p75NTR interactions. Thus, the development of pharmacological agents that can activate nerve growth factor-dependent pathways may be a promising therapeutic approach to combat methamphetamine addiction.

Methods

Here, we investigated transcriptional and translational alterations in the expression of neurotrophic factors in the rat striatum at 30 days following methamphetamine self-administration and footshock punishment. Male Sprague-Dawley rats were trained to self-administer methamphetamine (0.1 mg/kg/injection, i.v.) or saline during twenty-two 9-hour sessions. Subsequently, rats were subjected to incremental footshocks for 13 additional methamphetamine self-administration sessions. This paradigm led to the identification of rats with shock-resistant and shock-sensitive phenotypes. Thirty days following the last footshock session, the dorsal striatum was dissected and processed for gene expression and protein analyses.

Results

PCR arrays revealed significant differences in neurotrophins and their receptors between the 2 phenotypes. Brain-derived neurotrophic factor and nerve growth factor protein levels were increased in the dorsal striatum of both shock-resistant and shock-sensitive rats. However, neurotrophic receptor tyrosine kinase 1 phosphorylation and nerve growth factor receptor protein expression were increased only in the shock-sensitive phenotype. Moreover, shock-sensitive rats showed increased abundance of several phosphorylated proteins known to participate in Ras/Raf/MEK/ERK signaling cascade including cRaf, ERK1/2, MSK1, and CREB. Conclusions: These findings support the notion that animals with distinct phenotypes for methamphetamine intake in the presence of adverse consequences also display differential changes in an intracellular signaling cascade activated by nerve growth factor-TrkA/p75NTR interactions. Thus, the development of pharmacological agents that can activate nerve growth factor-dependent pathways may be a promising therapeutic approach to combat methamphetamine addiction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。