Elevated dietary selenium rescues mitochondrial capacity impairment induced by decreased vitamin E intake in young exercising horses

膳食中硒含量增加可挽救年轻运动马因维生素 E 摄入量减少而导致的线粒体容量受损

阅读:7
作者:Randi N Owen, Pier L Semanchik, Christine M Latham, Kristen M Brennan, Sarah H White-Springer

Abstract

Maintenance of mitochondrial health, which is supported in part by dietary antioxidants such as selenium (Se) and vitamin E (vitE), is pertinent to optimizing athletic performance. Deficiencies in Se and vitE negatively impact muscle health but mitochondrial adaptations to various levels of dietary Se and vitE are poorly understood. Young Quarter Horses (mean ± SD: 17.6 ± 0.9 mo) undergoing submaximal exercise training were used to test the hypothesis that a proprietary antioxidant blend containing elevated Se yeast (EconomasE, Alltech, Inc., Nicholasville, KY) would improve mitochondrial characteristics compared to Se at current requirements, even with reduced vitE intake. Horses were balanced by age, sex, body weight (BW), and farm of origin and randomly assigned to one of three custom-formulated concentrates fed at 1% BW (dry matter, DM basis) for 12 wk: 1) 100 IU vitE/kg DM and 0.1 mg Se/kg DM (CON, n = 6); 2) no added vitE plus EconomasE to provide 0.1 mg Se/kg DM (ESe1, n = 6); or 3) no added vitE plus EconomasE to provide 0.3 mg Se/kg DM (ESe3, n = 6). Samples collected at week 0 and 12 were analyzed for serum Se and middle gluteal glutathione peroxidase (GPx) and mitochondrial enzyme activities by kinetic colorimetry and mitochondrial capacities by high-resolution respirometry. Data were analyzed using mixed linear models in SAS v9.4 with repeated measures (time) and fixed effects of time, diet, and time × diet; horse(diet) served as a random effect. Serum Se tended to increase in all horses by week 12 (P = 0.08) but was unaffected by diet. Muscle GPx activity remained similar among all horses throughout the duration of the study. Mitochondrial volume density (citrate synthase [CS] activity), integrative function (cytochrome c oxidase [CCO] activity per mg protein), and integrative (per mg tissue) oxidative (P) and electron transfer (E) capacities increased from week 0 to 12 in all horses (P ≤ 0.01). Intrinsic (relative to CS) CCO activity decreased in all horses (P = 0.001), while intrinsic P and E capacities decreased only in ESe1 horses from week 0 to 12 (P ≤ 0.002). These results suggest that feeding EconomasE to provide 0.3 mg Se/kg DM may prevent adverse effects of removing 100 IU dietary vitE/kg DM on mitochondria in young horses. More research is needed to determine optimal dietary Se and vitE levels in performance horses to maximize mitochondrial energy production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。