Kinetics of Histidine-Tagged Protein Association to Nickel-Decorated Liposome Surfaces

组氨酸标记蛋白与镍修饰脂质体表面结合的动力学

阅读:9
作者:Gokul Raghunath, R Brian Dyer

Abstract

Nickel-chelating lipids offer a convenient platform for reversible immobilization of histidine-tagged proteins to liposome surfaces. This interaction recently found utility as a model system for studying membrane remodeling triggered by protein crowding. Despite its wide array of utility, the molecular details of transient protein association to the lipid surfaces decorated with such chelator lipids remains poorly understood. In this study, we explore the kinetics of protein-liposome association across a wide concentration range using stopped-flow fluorescence. The fluorescence of histidine-tagged protein containing an intrinsic fluorophore (superfolder green fluorescent protein, SfGFP) was quenched upon binding to Ni-NTA-modified liposomes containing the quencher Dabsyl-PE lipids. Stopped-flow fluorescence reveals a complex, multiexponential binding behavior with a fast (kobs ∼ 10-20 s-1) phase and slower (kobs < 4 s-1) phase. Interestingly, the observed rates for the slower phase increase initially under low concentrations but start decreasing once a critical concentration is reached. Despite differences in the binding time scales, we observe that the trend of decreasing rates is reproducible irrespective of the chelator lipid doping level, protein surface charge, or lipid composition. Consideration of the protein footprint and membrane surface area occupancy leads us to conclude that the multiphasic binding behavior is reflective of protein binding via two distinct binding conformations. We propose that preliminary steps in protein association involve binding of a sterically occlusive side-on conformation followed by reorganization that leads to an end-on conformation with increased packing density. These results are important for the improvement of histidine-tag-based immobilization strategies and offer mechanistic insight into intermediates preceding membrane bending driven by protein crowding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。