Aversive Learning Increases Release Probability of Olfactory Sensory Neurons

厌恶学习增加嗅觉感觉神经元的释放概率

阅读:4
作者:Janardhan P Bhattarai, Mary Schreck, Andrew H Moberly, Wenqin Luo, Minghong Ma

Abstract

Predicting danger from previously associated sensory stimuli is essential for survival. Contributions from altered peripheral sensory inputs are implicated in this process, but the underlying mechanisms remain elusive. Here, we use the mammalian olfactory system to investigate such mechanisms. Primary olfactory sensory neurons (OSNs) project their axons directly to the olfactory bulb (OB) glomeruli, where their synaptic release is subject to local and cortical influence and neuromodulation. Pairing optogenetic activation of a single glomerulus with foot shock in mice induces freezing to light stimulation alone during fear retrieval. This is accompanied by an increase in OSN release probability and a reduction in GABAB receptor expression in the conditioned glomerulus. Furthermore, freezing time is positively correlated with the release probability of OSNs in fear-conditioned mice. These results suggest that aversive learning increases peripheral olfactory inputs at the first synapse, which may contribute to the behavioral outcome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。