Platelet adhesion on commercially pure titanium plates in vitro I: effects of plasma components and involvement of the von Willebrand factor and fibronectin

体外商业纯钛板上血小板粘附I:血浆成分的影响以及血管性血友病因子和纤连蛋白的参与

阅读:5
作者:Akira Takahashi, Shotaro Takahashi, Tetsuhiro Tsujino, Kazushige Isobe, Taisuke Watanabe, Yutaka Kitamura, Takao Watanabe, Koh Nakata, Tomoyuki Kawase

Background

Platelet-rich plasma (PRP) is widely used in regenerative dentistry. Furthermore, it is often applied in the pretreatment of titanium implants to improve their surface bioaffinity and initial stability. However, effects of PRP application on implant surface at cellular and molecular levels remain poorly understood. Therefore, we examined platelet adhesion on commercially pure titanium (cp-Ti) plates, with a particular focus on fibrinogen (FGN), von Willebrand factor (vWF), and fibronectin (FN), in the presence or absence of plasma components.

Conclusions

Although FGN is rapidly and abundantly adsorbed on cp-Ti plate surface, vWF and FN function as major platelet adhesion molecules in citrated blood samples. After pretreatment with P-PRP, however, platelets adhered to cp-Ti much less efficiently. Therefore, P-PRP pretreatment might not directly contribute to surface functionalization, initial stabilization, and osseointegration of machined or similar types of implants.

Methods

Citrated blood samples were obtained from six healthy male volunteers, and pure-PRP (P-PRP) and pure platelet suspensions in phosphate-buffered saline (PBS) were prepared. Platelet adhesion on cp-Ti plate surface was evaluated by phalloidin staining and tetrazolium dye assay. Distribution of FGN, vWF, FN, albumin, CD62P, and CD63 was examined by immunocytochemical analysis.

Results

Platelets in PBS suspensions rapidly and time-dependently adhered to cp-Ti plate surface, but this adhesion was substantially disturbed by the presence of plasma components. FGN was most preferably adsorbed regardless of the presence or absence of plasma components, while vWF and FN showed greater accumulation on platelet adhesion area. Conclusions: Although FGN is rapidly and abundantly adsorbed on cp-Ti plate surface, vWF and FN function as major platelet adhesion molecules in citrated blood samples. After pretreatment with P-PRP, however, platelets adhered to cp-Ti much less efficiently. Therefore, P-PRP pretreatment might not directly contribute to surface functionalization, initial stabilization, and osseointegration of machined or similar types of implants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。