Sinorhizobium meliloti CheA complexed with CheS exhibits enhanced binding to CheY1, resulting in accelerated CheY1 dephosphorylation

与 CheS 复合的中华根瘤菌 CheA 表现出与 CheY1 增强的结合,从而加速 CheY1 去磷酸化

阅读:6
作者:Gaurav Dogra, Frauke G Purschke, Verena Wagner, Martin Haslbeck, Thomas Kriehuber, Jonathan G Hughes, Maxwell L Van Tassell, Crystal Gilbert, Melanie Niemeyer, W Keith Ray, Richard F Helm, Birgit E Scharf

Abstract

Retrophosphorylation of the histidine kinase CheA in the chemosensory transduction chain is a widespread mechanism for efficient dephosphorylation of the activated response regulator. First discovered in Sinorhizobium meliloti, the main response regulator CheY2-P shuttles its phosphoryl group back to CheA, while a second response regulator, CheY1, serves as a sink for surplus phosphoryl groups from CheA-P. We have identified a new component in this phospho-relay system, a small 97-amino-acid protein named CheS. CheS has no counterpart in enteric bacteria but revealed distinct similarities to proteins of unknown function in other members of the α subgroup of proteobacteria. Deletion of cheS causes a phenotype similar to that of a cheY1 deletion strain. Fluorescence microscopy revealed that CheS is part of the polar chemosensory cluster and that its cellular localization is dependent on the presence of CheA. In vitro binding, as well as coexpression and copurification studies, gave evidence of CheA/CheS complex formation. Using limited proteolysis coupled with mass spectrometric analyses, we defined CheA(163-256) to be the CheS binding domain, which overlaps with the N-terminal part of the CheY2 binding domain (CheA(174-316)). Phosphotransfer experiments using isolated CheA-P showed that dephosphorylation of CheY1-P but not CheY2-P is increased in the presence of CheS. As determined by surface plasmon resonance spectroscopy, CheY1 binds ∼100-fold more strongly to CheA/CheS than to CheA. We propose that CheS facilitates signal termination by enhancing the interaction of CheY1 and CheA, thereby promoting CheY1-P dephosphorylation, which results in a more efficient drainage of the phosphate sink.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。