Genetic linkage of autologous T cell epitopes in a chimeric recombinant construct improves anti-parasite and anti-disease protective effect of a malaria vaccine candidate

嵌合重组构建体中自体 T 细胞表位的遗传连接可提高疟疾候选疫苗的抗寄生虫和抗疾病保护作用

阅读:9
作者:Balwan Singh, Monica Cabrera-Mora, Jianlin Jiang, Mary Galinski, Alberto Moreno

Abstract

We have reported the design of polyvalent synthetic and recombinant chimeras that include promiscuous T cell epitopes as a viable delivery system for pre-erythrocytic subunit malaria vaccines. To further assess the ability of several Plasmodium T cell epitopes to enhance vaccine potency, we designed a synthetic gene encoding four Plasmodium yoelii merozoite surface protein 1 (PyMSP1) CD4(+) promiscuous T cell epitopes fused in tandem to the homologous carboxyl terminal PyMSP1(19) fragment. This Recombinant Modular Chimera (PyRMC-MSP1(19)) was tested for immunogenicity and protective efficacy in comparative experiments with a recombinant protein expressing only the PyMSP1(19) fragment. Both proteins induced comparable antibody responses. However PyRMC-MSP1(19) elicited higher anti-parasite antibody titers and more robust protection against both hyper-parasitemia and malarial anemia. Most importantly, passive transfer of anti-PyRMC-MSP1(19), but not anti-PyMSP1(19) antibodies protected against heterologous challenge. These studies show that protective efficacy can be significantly improved by inclusion of an array of autologous promiscuous T cell epitopes in vaccine constructs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。