Predicting complex kidney drug handling using a physiologically-based pharmacokinetic model informed by biomarker-estimated secretory clearance and blood flow

使用基于生理的药代动力学模型(根据生物标志物估计的分泌清除率和血流量)预测复杂的肾脏药物处理

阅读:20
作者:Michael L Granda, Weize Huang, Catherine K Yeung, Nina Isoherranen, Bryan Kestenbaum

Abstract

Kidney function-adjusted drug dosing is currently based solely on the estimated glomerular filtration rate (GFR), however, kidney drug handling is accomplished by a combination of filtration, tubular secretion, and re-absorption. Mechanistic physiologically-based pharmacokinetic (PBPK) models recapitulate anatomic compartments to predict elimination from estimated perfusion, filtration, secretion, and re-absorption, but clinical applications are limited by a lack of empiric individual-level measurements of these functions. We adapted and validated a PBPK model to predict drug clearance from individual biomarker-based estimates of kidney perfusion and secretory clearance. We estimated organic anion transporter-mediated secretion via kynurenic acid clearance and kidney blood flow (KBF) via isovalerylglycine clearance in human participants, incorporating these measurements with GFR into the model to predict kidney drug clearance. We compared measured and model-predicted clearances of administered tenofovir and oseltamivir, which are cleared by both filtration and secretion. There were 27 outpatients (age 55 ± 15 years, mean iohexol-GFR [iGFR] 76 ± 31 mL/min/1.73 m2 ) in this drug clearance study. The mean observed and mechanistic model-predicted tenofovir clearances were 169 ± 102 mL/min and 163 ± 80 mL/min, respectively; estimated mean error of the mechanistic model was 37.1 mL/min (95% confidence interval [CI]: 24-52.9), compared to a mean error of 41.8 mL/min (95% CI: 25-61.6) from regression model. The mean observed and model-predicted oseltamivir carboxylate clearances were 183 ± 104 mL/min and 179 ± 89 mL/min, respectively; estimated mean error of the mechanistic model was 42.9 mL/min (95% CI: 29.7-56.4), versus error of 48.1 mL/min (95% CI: 31.2-67.3) from the regression model. Individualized estimates of tubular secretion and KBF improved the accuracy of PBPK model-predicted tenofovir and oseltamivir kidney clearances, suggesting the potential for biomarker-informed measures of kidney function to refine personalized drug dosing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。