Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 calcium channels

与 CaV2.1 钙通道 C 末端结构域结合的 Ca2+/钙调蛋白依赖性蛋白激酶 II 的 Ca2+ 非依赖性激活

阅读:7
作者:Venkat G Magupalli, Sumiko Mochida, Jin Yan, Xin Jiang, Ruth E Westenbroek, Angus C Nairn, Todd Scheuer, William A Catterall

Abstract

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of Ca(V)2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca(2+)/CaM stimulus. Autophosphorylated CaMKII can bind the Ca(V)2.1 channel and synapsin-1 simultaneously. CaMKII binding to Ca(V)2.1 channels induces Ca(2+)-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of Ca(V)2.1 channels by binding of Ca(2+)/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to Ca(V)2.1 channels. These results define the functional properties of a signaling complex of CaMKII and Ca(V)2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。