Methylation of the JMJD2B epigenetic regulator differentially affects its ability to coactivate the ETV1 and JUN transcription factors

JMJD2B 表观遗传调节因子的甲基化对其共激活 ETV1 和 JUN 转录因子的能力有不同的影响

阅读:13
作者:Tae-Dong Kim, Ruicai Gu, Ralf Janknecht

Conclusions

The identified SET7/9-mediated methylation of JMJD2B appears to impact its cooperation with selected interacting transcription factors in prostate cancer cells. Given the implicated roles of JMJD2B beyond prostate tumorigenesis, SET7/9-mediated methylation of JMJD2B possibly also influences the development of other cancers, while its impairment might have relevance for obesity or a global developmental delay that can be elicited by reduced JMJD2B activity.

Methods

Through in vitro methylation assays and Western blotting with methyl-lysine specific antibodies, we analyzed lysine methylation within JMJD2B. Identified methylated lysine residues were mutated to arginine residues and the respective impact on JMJD2B transcriptional activity measured with a reporter gene assay in human LNCaP prostate cancer cells.

Results

We discovered that JMJD2B is methylated on up to six different lysine residues. Further, we identified the suppressor of variegation 3-9/enhancer of zeste/trithorax (SET) domain-containing protein 7/9 (SET7/9) as the methyltransferase being responsible for this posttranslational modification. Mutating the methylation sites in JMJD2B to arginine residues led to diminished coactivation of the Ju-nana (JUN) transcription factor, which is a known oncogenic protein in prostate tumors. In contrast, methylation of JMJD2B had no impact on its ability to coactivate another transcription factor associated with prostate cancer, the DNA-binding protein E26 transformation-specific (ETS) variant 1 (ETV1). Consistent with a potential joint action of JMJD2B, SET7/9 and JUN in prostate cancer, the expression of JMJD2B in human prostate tumors was positively correlated with both SET7/9 and JUN levels. Conclusions: The identified SET7/9-mediated methylation of JMJD2B appears to impact its cooperation with selected interacting transcription factors in prostate cancer cells. Given the implicated roles of JMJD2B beyond prostate tumorigenesis, SET7/9-mediated methylation of JMJD2B possibly also influences the development of other cancers, while its impairment might have relevance for obesity or a global developmental delay that can be elicited by reduced JMJD2B activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。