Conclusion
PKM2 activation could restore the tubular phenotype via suppression of the EMT program and aberrant glycolysis, providing an alternative target to mitigate fibrosis in diabetic kidneys.
Methods
In vivo: Streptozotocin (STZ) was utilized to induce diabetes in 8-week-old CD-1 mice; 4 weeks after diabetes induction, proteinuria-induced kidney fibrosis was developed by intraperitoneal injection of bovine serum albumin (BSA: 0.3 g/30 g BW) for 14 days; The PKM2 activator TEPP-46 was also administered orally simultaneously. In vitro: HK2 cells were co-treated with high-glucose media or/and TGF-β1 and TEPP46 for 48 h, cellular protein was extracted for evaluation.
Results
Diabetic mice developed kidney fibrosis associated with aberrant glycolysis and EMT; BSA injection accelerated kidney fibrosis in both the control and diabetic mice; TEPP-46 rescued the kidney fibrosis. In HK2 cells, TEPP-46 suppressed the EMT program induced by TGF-β1 and/or high-glucose incubation. TEPP-46-induced PKM2 tetramer formation and PK activity resulted in suppression of HIF-1α and lactate accumulation. Specific siRNA-mediated knockdown of HIF-1α expression diminished high glucose-induced mesenchymal protein levels.
