Phosphorylation of SNAP-23 at Ser95 causes a structural alteration and negatively regulates Fc receptor-mediated phagosome formation and maturation in macrophages

SNAP-23 在 Ser95 位点的磷酸化会引起结构改变,并对巨噬细胞中 Fc 受体介导的吞噬体形成和成熟产生负向调节作用

阅读:3
作者:Chiye Sakurai, Makoto Itakura, Daiki Kinoshita, Seisuke Arai, Hitoshi Hashimoto, Ikuo Wada, Kiyotaka Hatsuzawa

Abstract

SNAP-23 is a plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) involved in Fc receptor (FcR)-mediated phagocytosis. However, the regulatory mechanism underlying its function remains elusive. Using phosphorylation-specific antibodies, SNAP-23 was found to be phosphorylated at Ser95 in macrophages. To understand the role of this phosphorylation, we established macrophage lines overexpressing the nonphosphorylatable S95A or the phosphomimicking S95D mutation. The efficiency of phagosome formation and maturation was severely reduced in SNAP-23-S95D-overexpressing cells. To examine whether phosphorylation at Ser95 affected SNAP-23 structure, we constructed intramolecular Förster resonance energy transfer (FRET) probes of SNAP-23 designed to evaluate the approximation of the N termini of the two SNARE motifs. Interestingly, a high FRET efficiency was detected on the membrane when the S95D probe was used, indicating that phosphorylation at Ser95 caused a dynamic structural shift to the closed form. Coexpression of IκB kinase (IKK) 2 enhanced the FRET efficiency of the wild-type probe on the phagosome membrane. Furthermore, the enhanced phagosomal FRET signal in interferon-γ-activated macrophages was largely dependent on IKK2, and this kinase mediated a delay in phagosome-lysosome fusion. These results suggested that SNAP-23 phosphorylation at Ser95 played an important role in the regulation of SNARE-dependent membrane fusion during FcR-mediated phagocytosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。