Identification and Defensive Characterization of PmCYP720B11v2 from Pinus massoniana

马尾松PmCYP720B11v2基因的鉴定及防御特性

阅读:12
作者:Bin Liu, Yini Xie, Huanhuan Yin, Zhichun Zhou, Qinghua Liu

Abstract

Pinus massoniana is a pioneer species for afforestation timber and oleoresin, while epidemics of pinewood nematode (PWN; Bursaphelenchus xylophilus) are causing a serious biotic disaster for P. massoniana in China. Importantly, resistant P. massoniana could leak copious oleoresin terpenoids to build particular defense fronts for survival when attacked by PWN. However, the defense mechanisms regulating this process remain unknown. Here, PmCYP720B11v2, a cytochrome P450 monooxygenase gene, was first identified and functionally characterized from resistant P. massoniana following PWN inoculation. The tissue-specific expression pattern and localization of PmCYP720B11v2 at the transcript and protein levels in resistant P. massoniana indicated that its upregulation in the stem supported its involvement in the metabolic processes of diterpene biosynthesis as a positive part of the defense against PWN attack. Furthermore, overexpression of PmCYP720B11v2 may enhance the growth and development of plants. In addition, PmCYP720B11v2 activated the metabolic flux of antioxidases and stress-responsive proteins under drought conditions and improved drought stress tolerance. Our results provide new insights into the favorable role of PmCYP720B11v2 in diterpene defense mechanisms in response to PWN attack in resistant P. massoniana and provide a novel metabolic engineering scenario to reform the stress tolerance potential of tobacco.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。