Subtelomeric ACS-containing proto-silencers act as antisilencers in replication factors mutants in Saccharomyces cerevisiae

亚端粒含有 ACS 的原沉默子在酿酒酵母的复制因子突变体中起抗沉默子的作用

阅读:5
作者:Muhammad Attiq Rehman, Dongliang Wang, Genevieve Fourel, Eric Gilson, Krassimir Yankulov

Abstract

Subtelomeric genes are either fully active or completely repressed and can switch their state about once per 20 generations. This meta-stable telomeric position effect is mediated by strong repression signals emitted by the telomere and relayed/enhanced by weaker repressor elements called proto-silencers. In addition, subtelomeric regions contain sequences with chromatin partitioning and antisilencing activities referred to as subtelomeric antisilencing regions. Using extensive mutational analysis of subtelomeric elements, we show that ARS consensus sequence (ACS)-containing proto-silencers convert to antisilencers in several replication factor mutants. We point out the significance of the B1 auxiliary sequence next to ACS in mediating these effects. In contrast, an origin-derived ACS does not convert to antisilencer in mutants and its B1 element has little bearing on silencing. These results are specific for the analyzed ACS and in addition to the effects of each mutation (relative to wild type) on global silencing. Another line of experiments shows that Mcm5p possesses antisilencing activity and is recruited to telomeres in an ACS-dependent manner. Mcm5p persists at this location at the late stages of S phase. We propose that telomeric ACS are not static proto-silencers but conduct finely tuned silencing and antisilencing activities mediated by ACS-bound factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。