SNHG5 protects chondrocytes in interleukin-1β-stimulated osteoarthritis via regulating miR-181a-5p/TGFBR3 axis

SNHG5 通过调节 miR-181a-5p/TGFBR3 轴保护白细胞介素-1β 刺激的骨关节炎中的软骨细胞

阅读:6
作者:Yang Yue, Sun Zhibo, Liu Feng, Bai Yuanzhang, Wu Fei

Abstract

Long noncoding RNAs (lncRNAs) have been considered as important modulators in the development of osteoarthritis. The present study investigates whether there is a link between lncRNA small nucleolar RNA host gene 5 (SNHG5) and osteoarthritis pathogenesis, and the underlying molecular mechanism. To establish an in vitro model of osteoarthritis, interleukin 1β (IL-1β) was used to treat chondrocytes (C20/A4 cells) for mimicking the inflammatory condition in osteoarthritis pathogenesis. SNHG5 and miR-181a-5p expression levels were then detected in cartilage tissues of osteoarthritis patients and C20/A4 cells by quantitative polymerase chain reaction (qPCR). Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were applied for detecting the viability of chondrocytes, and the apoptosis of chondrocytes was examined through caspase-3 activity assay and flow cytometry analysis. Western blot and qPCR were employed for determining the expression levels of TGFBR3, ADAMTS5, and MMP-13. The regulatory relationships among SNHG5, miR-181a-5p, and TGFBR3 were verified by RNA immunoprecipitation and dual-luciferase reporter assays. The expression levels of SNHG5 and TGFBR3 were markedly decreased, and miR-181a-5p expression was enhanced in osteoarthritis tissues and chondrocytes treated with IL-1β. SNHG5 knockdown inhibited the viability of chondrocytes, induced apoptosis, and promoted the expression levels of ADAMTS5 and MMP-13. Conversely, SNHG5 overexpression could counteract the effects of IL-1β, increase the viability of chondrocytes and suppress apoptosis. Mechanically, SNHG5 positively regulated TGFBR3 expression via sponging miR-181a-5p. Moreover, miR-181a-5p overexpression and TGFBR3 knockdown counteracted the effects of SNHG5 on chondrocytes. SNHG5 can probably protect chondrocytes from the inflammatory response and reduce the degradation of the extracellular matrix via modulating the miR-181a-5p/TGFBR3 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。