Precise measurement of nanoscopic septin ring structures with deep learning-assisted quantitative superresolution microscopy

利用深度学习辅助定量超分辨率显微镜精确测量纳米级隔膜环结构

阅读:8
作者:Amin Zehtabian, Paul Markus Müller, Maximilian Goisser, Leon Obendorf, Lea Jänisch, Nadja Hümpfer, Jakob Rentsch, Helge Ewers

Abstract

The combination of image analysis and superresolution microscopy methods allows for unprecedented insight into the organization of macromolecular assemblies in cells. Advances in deep learning (DL)-based object recognition enable the automated processing of large amounts of data, resulting in high accuracy through averaging. However, while the analysis of highly symmetric structures of constant size allows for a resolution approaching the dimensions of structural biology, DL-based image recognition may introduce bias. This prohibits the development of readouts for processes that involve significant changes in size or shape of amorphous macromolecular complexes. Here we address this problem by using changes of septin ring structures in single molecule localization-based superresolution microscopy data as a paradigm. We identify potential sources of bias resulting from different training approaches by rigorous testing of trained models using real or simulated data covering a wide range of possible results. In a quantitative comparison of our models, we find that a trade-off exists between measurement accuracy and the range of recognized phenotypes. Using our thus verified models, we find that septin ring size can be explained by the number of subunits they are assembled from alone. Furthermore, we provide a new experimental system for the investigation of septin polymerization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。