Mechanical and Dynamic Mechanical Behavior of the Lignocellulosic Pine Needle Fiber-Reinforced SEBS Composites

木质纤维素松针纤维增强SEBS复合材料的机械和动态力学行为

阅读:13
作者:Dinesh, Bijender Kumar, Jaehwan Kim

Abstract

Aiming to generate wealth from waste and due to their significant fire threats to forests and their rich cellulose content, lignocellulosic pine needle fibers (PNFs) are utilized in this study as a reinforcement of the thermoplastic elastomer styrene ethylene butylene styrene (SEBS) matrix to create environmentally friendly and economical PNF/SEBS composites using a maleic anhydride-grafted SEBS compatibilizer. The chemical interaction in the composites studied by FTIR shows that strong ester bonds are formed between reinforcing PNF, the compatibilizer, and the SEBS polymer, leading to strong interfacial adhesion between the PNF and SEBS in the composites. This strong adhesion in the composite exhibits higher mechanical properties than the matrix polymer indicating a 1150 % higher modulus and a 50 % higher strength relative to the matrix. Further, the SEM pictures of the tensile-fractured samples of the composites validate this strong interface. Finally, the prepared composites show better dynamic mechanical behavior indicating higher storage and loss moduli and Tg than the matrix polymer suggesting their potential for engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。