Sensitivity of collective outcomes identifies pivotal components

集体结果的敏感性确定了关键组成部分

阅读:9
作者:Edward D Lee, Daniel M Katz, Michael J Bommarito 2nd, Paul H Ginsparg

Abstract

A social system is susceptible to perturbation when its collective properties depend sensitively on a few pivotal components. Using the information geometry of minimal models from statistical physics, we develop an approach to identify pivotal components to which coarse-grained, or aggregate, properties are sensitive. As an example, we introduce our approach on a reduced toy model with a median voter who always votes in the majority. The sensitivity of majority-minority divisions to changing voter behaviour pinpoints the unique role of the median. More generally, the sensitivity identifies pivotal components that precisely determine collective outcomes generated by a complex network of interactions. Using perturbations to target pivotal components in the models, we analyse datasets from political voting, finance and Twitter. Across these systems, we find remarkable variety, from systems dominated by a median-like component to those whose components behave more equally. In the context of political institutions such as courts or legislatures, our methodology can help describe how changes in voters map to new collective voting outcomes. For economic indices, differing system response reflects varying fiscal conditions across time. Thus, our information-geometric approach provides a principled, quantitative framework that may help assess the robustness of collective outcomes to targeted perturbation and compare social institutions, or even biological networks, with one another and across time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。