Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses

小鼠巨噬细胞上的神经节苷脂连接末端唾液酸部分可作为小鼠诺如病毒的附着受体

阅读:7
作者:Stefan Taube, Jeffrey W Perry, Kristen Yetming, Sagar P Patel, Heather Auble, Liming Shu, Hesham F Nawar, Chang Hoon Lee, Terry D Connell, James A Shayman, Christiane E Wobus

Abstract

Noroviruses are the major cause of nonbacterial gastroenteritis in humans. However, little is known regarding the norovirus life cycle, including cell binding and entry. In contrast to human noroviruses, the recently discovered murine norovirus 1 (MNV-1) readily infects murine macrophages and dendritic cells in culture. Many viruses, including the related feline calicivirus, use terminal sialic acids (SA) as receptors for infection. Therefore, we tested whether SA moieties play a role during MNV-1 infection of murine macrophages. Competition with SA-binding lectins and neuraminidase treatment led to a reduction in MNV-1 binding and infection in cultured and primary murine macrophages, suggesting a role for SA during the initial steps of the MNV-1 life cycle. Because SA moieties can be attached to glycolipids (i.e., gangliosides), we next determined whether MNV-1 uses gangliosides during infection. The gangliosides GD1a, GM1, and asialo-GM1 (GA1) are natural components of murine macrophages. MNV-1 bound to ganglioside GD1a, which is characterized by an SA on the terminal galactose, but not to GM1 or asialo-GM1 in an enzyme-linked immunosorbent assay. The depletion of gangliosides using an inhibitor of glycosylceramide synthase (d-threo-P4) led to a reduction of MNV-1 binding and infection in cultured and primary murine macrophages. This defect was specifically rescued by the addition of GD1a. A similar phenotype was observed for MNV field strains WU11 (GV/WU11/2005/USA) and S99 (GV/Berlin/2006/DE). In conclusion, our data indicate that MNV can use terminal SA on gangliosides as attachment receptors during binding to murine macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。