3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension

3D 生物打印、光可调水凝胶模型用于研究肺动脉高压中的外膜成纤维细胞活化

阅读:8
作者:Duncan Davis-Hall, Emily Thomas, Brisa Peña, Chelsea M Magin

Abstract

Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature, characterized by elevated pulmonary blood pressure, remodeling of the pulmonary arteries, and ultimately right ventricular failure. Therapeutic interventions for PAH are limited in part by the lack ofin vitroscreening platforms that accurately reproduce dynamic arterial wall mechanical properties. Here we present a 3D-bioprinted model of the pulmonary arterial adventitia comprised of a phototunable poly(ethylene glycol) alpha methacrylate (PEG-αMA)-based hydrogel and primary human pulmonary artery adventitia fibroblasts (HPAAFs). This unique biomaterial emulates PAH pathogenesisin vitrothrough a two-step polymerization reaction. First, PEG-αMA macromer was crosslinked off-stoichiometry by 3D bioprinting an acidic bioink solution into a basic gelatin support bath initiating a base-catalyzed thiol-ene reaction with synthetic and biodegradable crosslinkers. Then, matrix stiffening was induced by photoinitiated homopolymerization of unreacted αMA end groups. A design of experiments approach produced a hydrogel platform that exhibited an initial elastic modulus (E) within the range of healthy pulmonary arterial tissue (E= 4.7 ± 0.09 kPa) that was stiffened to the pathologic range of hypertensive tissue (E= 12.8 ± 0.47 kPa) and supported cellular proliferation over time. A higher percentage of HPAAFs cultured in stiffened hydrogels expressed the fibrotic marker alpha-smooth muscle actin than cells in soft hydrogels (88 ± 2% versus 65 ± 4%). Likewise, a greater percentage of HPAAFs were positive for the proliferation marker 5-ethynyl-2'-deoxyuridine (EdU) in stiffened models (66 ± 6%) compared to soft (39 ± 6%). These results demonstrate that 3D-bioprinted, phototunable models of pulmonary artery adventitia are a tool that enable investigation of fibrotic pathogenesisin vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。