Amyloid-β exposed astrocytes induce iron transport from endothelial cells at the blood-brain barrier by altering the ratio of apo- and holo-transferrin

暴露于淀粉样β蛋白的星形胶质细胞通过改变脱铁蛋白和全铁蛋白的比例来诱导血脑屏障内皮细胞的铁转运

阅读:6
作者:Stephanie L Baringer, Avraham S Lukacher, Kondaiah Palsa, Hyosung Kim, Ethan S Lippmann, Vladimir S Spiegelman, Ian A Simpson, James R Connor

Abstract

Excessive brain iron accumulation is observed early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-β disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-β stimulates iron transport from endothelial cells and induces changes in iron transport pathway proteins. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes, which in turn increases levels of apo-transferrin in the amyloid-β conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease that can lead to iron accumulation. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。